Three-Dimensional Backscatter X-Ray

In-Space Non-Destructive Inspection Technology Workshop
Arturo Reyes, PhD
D. Clark Turner, PhD, CEO
Feb 29 - Mar 1, 2012

Radiography

- ☐ Radiography is often used for imaging
- ☐ Radiography generally comprises:

- > Transmission
- Backscatter

☐ Transmission is a 2-sided technique

Backscatter Radiography

□ One-sided technique

- □ Conventional technique:
 - Based on single-scatter detected to form image
 - Higher-order scattering is considered noise
- Conventional backscatter scanning systems:
 - Highly collimated x-ray beams and detectors
 - Uncollimated x-ray beams and large area detectors

Radiography by Selective Detection (RSD) University of Florida/ NUCSAFE, Inc.

- ☐ Highly collimated x-ray beams required
- □ Relatively steep angles are required for imaging
- ☐ Scanning head (array of detectors/x-ray generator) sweeps a line at a time
- ☐ Image acquisition is a very time-consuming process

- Advantages
- ☐ Rotationally movable system
- ☐ A cone-beam x-ray source is used, allowing:
 - Simultaneous image data collection
 - Large field of view
 - Reduce data collection time
- □ Collection of 2D images 360° around the object to be imaged
- ☐ A 3D-processing computer model under development
- ☐ Patent pending

The proposed framework

A mockup of initial setup

Multiples images of a void-in-acrylic with metallic objects using initial system setup

Typical void-in-foam images taken with initial system setup

Improvements to initial system design

- ☐ Brighter x-ray source
- ☐ Wider x-ray source cone beam
- □ A digital detector (instead of a Photostimulated Plate (PSP) used in the initial setup)
- Stacked collimator for better resolution
- ☐ System automation for use in a more realistic environment

Prototype design

NASA - ADJUSTABLE BACKSCATTER X-RAY APPARATUS

Simulation and 3D-Reconstruction Computer Model

- □ Computer model is being developed by the Scientific Computing and Imaging Institute of the University of Utah
- ☐ The "Simultaneous Algebraic Reconstruction Technique" (SART) reconstruction algorithm seems to be a good choice for backscatter CT reconstruction
- □ Currently working on the computer code to improve and account for:
 - Reconstruction algorithms
 - Multiple scattering for the energy range under consideration
 - Inhomogeneities in the cone-beam intensity

Simulation and 3D-Reconstruction Computer Model

- ☐ Internal path absorption of incoming x rays
- ☐ Integration of backscattering events exiting the material
- ☐ Accounting for path absorption of outbound backscattering
- ☐ Detection in individual pixels

Simulation and 3D-Reconstruction Computer Model

Illustration of the resolution of the simulated backscatter CT

Original (4mm, 20mm deep) — Reconstruction

OTHER POTENTIAL APPLICATIONS

- □ Aeronautics
- ☐ Cargo Inspection
- NDT and explosive detection
- □ Construction and Related Industries

SUMMARY

- ARIBEX proposed innovation is an alternative for one-side backscatter 3D imaging
- □ Proof of concept for 2D images has been achieved

- □ 3D-reconstruction simulations results are encouraging
- □ A system prototype design has been completed
- ☐ Other potential applications

www.aribex.com